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Abstract. In this paper, we propose an efficient method for searching for a globally1

optimal k-partition of the set A ⊂ Rn. Due to the property of the DIRECT global optimiza-2

tion algorithm to usually quickly arrive close to a point of global minimum, after which3

it slowly attains the desired accuracy, the proposed method uses the well-known k-means4

algorithm with a initial approximation chosen on the basis of only a few iterations of the5

DIRECT algorithm. In case of searching for an optimal k-partition of spherical clusters, the6

method is not worse than other known methods, but in case of solving the multiple circle7

detection problem, the proposed method shows remarkable superiority.8
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1 Introduction12

A hard partition of the set A = {ai ∈ Rn : i = 1, . . . ,m} into k nonempty disjoint subsets13

π1, . . . , πk, 1 ≤ k ≤ m will be denoted by Π(A) = {π1, . . . , πk} and the set of all such14

partitions will be denoted by P(A; k). The elements π1, . . . , πk of the partition Π are15

called clusters.16

If d : Rn ×Rn → R+, R+ = [0,+∞〉 is some distance-like function (see e.g. [16]), then17

to each cluster πj ∈ Π we can associate its center cj defined by18

cj := argmin
x∈conv(A)

∑
ai∈πj

d(x, ai). (1)19

1Corresponding author: Rudolf Scitovski, e-mail: scitowsk@mathos.hr, telephone number: ++385-
31-224-800, fax number: ++385-31-224-801
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After that, by introducing the objective function F : P(A; k) → R+, the quality of a1

partition can be defined, and searching for a globally optimal k-partition comes down to2

solving the following optimization problem:3

argmin
Π∈P(A;k)

F(Π), F(Π) =
k∑
j=1

∑
ai∈πj

d(cj, ai), c = (c1, . . . , ck). (2)4

Conversely, for a given set of points c1, . . . , ck ∈ Rn, by applying the minimal distance5

principle, we can define the partition Π = {π(c1), . . . , π(ck)} of the set A consisting of6

clusters7

π(cj) = {a ∈ A : d(cj, a) ≤ d(cs, a), ∀s = 1, . . . , k}, j = 1, . . . , k.8

Hence, the problem of finding an optimal partition of the set A can be reduced to the9

following global optimization problem (GOP) (see e.g. [16, 35]):10

argmin
c∈conv(A)k

F (c), F (c) =
m∑
i=1

min
1≤j≤k

d(cj, ai). (3)11

where F : Rnk → R+. The solutions of (2) and (3) coincide [33, 35].12

In this paper, we will use the Least Squares (LS) distance-like function d(x, y) =13

‖x− y‖2
2.14

Clustering a data set into several clusters has a very wide range of applications in15

multiple areas such as seismic zoning investigation [21, 33], pattern recognition [8, 10],16

facility location problem, text classification, machine learning, business, biology, agricul-17

ture, medicine, psychology, etc. (see e.g. [5, 6, 29]).18

For the set of data points A ⊂ Rn with n features, in this paper we propose a method19

that gives a k-partition near the globally optimal one. The method is based on the k-means20

algorithm in which the initial approximation has been chosen by using the DIRECT global21

optimization algorithm [14, 15] in a few iterations. For instance, in the test-examples22

mentioned in Section 2.3, 5− 6 iterations proved to be sufficient. After that, by applying23

the k-means algorithm, we obtain a partition very close to the globally optimal one very24

quickly.25

The proposed method is also very successfully applied to solving the multiple circle26

detection problem (see Section 3).27

The method was tested on artificial data sets originating from a known partition,28

which made it possible to check the results by using the adjusted Rand (AR) index [13]29

and the Hausdorff distance [31].30

The results show that the proposed method is not worse in case of searching for an31

optimal partition consisting of ordinary spherical clusters in Rn, but when it comes to its32

application to solving the multiple circle detection problem, the proposed method shows33

remarkable superiority in relation to other test methods. Very short CPU-time in this case34

indicates the possibility of applying it to real-time applications.35
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The paper is organized as follows. In the next section, we consider the proposed1

method in case of searching for an optimal k-partition of spherical clusters in Rn. The2

method is compared with other known methods and tested on 100 randomly generated3

data sets from R2 and 100 randomly generated data sets from R5. In Section 3, we consider4

an application of the proposed method to solving the multiple circle detection problem.5

Two variants of the method are presented, which are then compared with other known6

methods and tested on 100 randomly generated data sets. Finally, some conclusions are7

discussed in Section 4.8

2 Searching for a solution of GOP (3)9

Given is a set of data points A = {ai = (ai1, . . . , ain) ∈ [α, β] : i = 1, . . . ,m} ⊂ Rn, where10

[α, β] = {x ∈ Rn : αi ≤ xi ≤ βi} and α = (α1, . . . , αn)T , β = (β1, . . . , βn)T ∈ Rn. The GOP11

(3) is a complex global optimization problem because the objective function F : Rnk → R+,12

given by (3), can have a great number of independent variables, it does not have to be13

either convex or differentiable and generally it may have several local minima, but, as will14

be shown in the following theorem, the function F is a Lipschitz continuous function.15

Theorem 1. Let A = {ai ∈ Rn : i = 1, . . . ,m} ⊂ [α, β] be a set of data points. The16

function F : [α, β]k → R+,17

F (c) =
m∑
i=1

min
j=1,...,k

‖cj − ai‖2,18

is a Lipschitz continuous on [α, β]k.19

Proof. If we define the auxiliary function Fε : [α, β]k → R+ by20

Fε(u) = −ε
m∑
i=1

log
k∑
j=1

exp
(
− ‖cj−ai‖2

ε

)
,21

then, according to [16], we have22

0 ≤ F (u)− Fε(u) ≤ εm log k,23

and, consequently,24

|F (u)− F (v)| = |(F (u)− Fε(u)) + (Fε(v)− F (v)) + (Fε(u)− Fε(v))|25

≤ |F (u)− Fε(u)|+ |Fε(v)− F (v)|+ |Fε(u)− Fε(v)|26

≤ 2εm log k + |Fε(u)− Fε(v)|. (4)27
28

Because29

∂Fε(x)
∂xp

= 2
m∑
i=1

(xp−ai) exp
(
−
‖xp−ai‖2

ε

)
∑k

j=1 exp
(
−
‖xj−ai‖2

ε

) ,30

31
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it follows1 ∥∥∥∂Fε(x)
∂xp

∥∥∥ ≤ 2
m∑
i=1
‖xp − ai‖ ≤ 2

m∑
i=1

max
j=1,...,m

‖ai − aj‖2

≤ 2m max
i,j∈{1,...,m}

‖ai − aj‖, p = 1, . . . , k,3

4

i.e. the gradient ∇Fε(x) is continuous and bounded on [α, β]k. By using Lagrange’s mean5

value theorem for the function Fε on [α, β]k, there exists L > 0 (not depending on ε) such6

that7

|Fε(u)− Fε(v)| ≤ L‖u− v‖, u, v ∈ [α, β]k.8

Finally, if ε→ 0+, from (4) it follows that |F (u)− F (v)| ≤ L‖u− v‖.9

In order to solve GOP (3), we can apply one of the known global optimization methods10

[12, 17, 20, 34, 39]. For example, the DIRECT optimization algorithm [14, 15], can be11

applied, but due to a large number of independent variables of the objective function F12

and the property of the DIRECT algorithm to search for all points of the global minimum,13

that would be a very inefficient procedure (see Sections 2.3 and 3.4). Namely, in case14

of searching for an optimal k-partition of the set A ⊂ Rn, this means that the algorithm15

finds at least k! different points in which the global minimum is attained (see [11]).16

Some known methods for solving GOP (3), such as different variants of the k-means17

algorithm [3, 4, 16, 18, 27] or different incremental algorithms [3, 4, 21, 33], give either18

stationary points or a locally optimal partition, which is highly dependent on the choice19

of the initial approximation.20

In particular, when it comes to data that have only one feature, i.e. A ⊂ R, we21

can apply special global optimization methods for the symmetric Lipschitz continuous22

function: DISIMPL, SymDIRECT, SepDIRECT (see [11, 23–26, 30]), which give a globally23

optimal partition. Generally, if A ⊂ Rn, (n > 1), the function F given by (3) is a24

symmetric function in the vectors c1, . . . , ck ∈ Rn because F (c′1, . . . , c′k) = F (c1, . . . , ck)25

where (c′1, . . . , c′k) is a permutation of the vectors c1, . . . , ck, but the function F is not26

symmetric in all its variables and, therefore, the mentioned methods cannot be used in27

case of n > 1.28

29

2.1 GOPart: a new method for solving GOP (3)30

In this subsection we will describe a new method for solving GOP (3): Globally Optimal31

Partition (GOPart) method.32

Having in mind that DIRECT algorithm arrives close to a global minimum very fast,33

after which it slowly increases the accuracy (see e.g. [23]), in order to find a solution to GOP34

(3), the DIRECT algorithm will be used only for achieving a favorable initial approximation35

for the k-means algorithm. For that particular purpose, the functional F : [α, β]k → R36
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given by (3) will be transformed into f : [0, 1]kn → R, f(x) = (F ◦ T−1)(x), where the1

mapping T : [α, β]k → [0, 1]kn is given by2

T (x) = D(x− u), (5)3

D = diag
(

1
β1−α1

, . . . , 1
βn−αn

, . . . , 1
β1−α1

, . . . , 1
βn−αn

)
∈ R(kn)×(kn),4

u = (α1, . . . , αn, . . . , α1, . . . , αn) ∈ Rkn,5
6

and the mapping T−1 : [0, 1]kn → [α, β]k is given by T−1(x) = D−1x+ u.7

By this transformation GOP (3) becomes the following GOP:8

argmin
x∈[0,1]kn

f(x), f(x) = (F ◦ T−1)(x). (6)9

If x̂ ∈ [0, 1]kn is an approximation of the solution to GOP (6), then the approximation of10

the solution to GOP (3) becomes ĉ = T−1(x̂), where F (ĉ) = F (T−1(x̂)) = f(x̂).11

In order to search for a good initial approximation of GOP (6), we will apply the DIRECT12

algorithm and stop it after a few iterations. In the numerical experiments given below, it13

was enough to perform only 5− 6 iterations of the DIRECT algorithm.14

To the initial approximation obtained in this way, we applied the standard k-means15

algorithm, which quickly led to a solution very close to the globally optimal one. The16

corresponding pseudocode for the described method is given in Algorithm 1. Numerous17

examples presented in Sections 2.3 and 3.4 show the efficiency of the proposed method18

and this algorithm.19

Algorithm 1 : GOPart(A, k)
Input: A ⊂ [α, β]n {Set of data points}; k ≥ 2 ε > 0;

1: Define the mapping T−1 : [0, 1]kn → [α, β]k, T−1(x) = D−1x + u and the objective
function f = F ◦ T−1, where T is given by (5) and F is given by (3);

2: By using the DIRECT algorithm find the initial approximation x̂ = (x̂1, . . . , x̂k) ∈
[0, 1]kn of GOP (6);

3: By using the standard k-means algorithm with the initial approximation x̂ determine
cluster centers x? = (x?1, . . . , x?k);

4: Calculate c? = (c?1, . . . , c?k) = T−1(x?) ∈ [α, β]k;
Output: {c?, F (x?)}.

2.2 Comparison with some known methods20

The efficiency of the proposed GOPart method and corresponding algorithm will be com-21

pared with some known frequently cited algorithms, such as the DIRECT algorithm, the22

Multistart k-means algorithm, and the Incremental algorithm.23

2.2.1 The DIRECT algorithm24

A derivative-free, deterministic sampling method for global optimization of a Lipschitz25

continuous function g : D → R defined on a bound-constrained region D ⊂ Rp named26
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Dividing Rectangles (DIRECT) was proposed by [15]. The function g is first transformed1

into f : [0, 1]p → R, and after that, by means of a standard strategy (see, e.g. [9, 14, 15]),2

the unit hypercube [0, 1]p is divided into smaller hyperrectangles, among which the so-3

called potentially optimal ones are first searched for and then further divided. It should4

be noted that this procedure does not assume knowing the Lipschitz constant L > 0.5

Searching for a globally optimal partition by using the DIRECT algorithm has proved6

to be insufficiently efficient (see numerical experiments in Section 2.3 and 3.4). Namely,7

as mentioned earlier (see e.g. [23]), the DIRECT algorithm quickly arrives close to a point8

of global minimum, but it can be very slow when it needs to attain high accuracy. Apart9

from that, in our case (6) the set argmin
x∈[0,1]kn

f(x) contains at least k! different points of global10

minimum (see also [11, 30]), and DIRECT algorithm will search through all those points.11

2.2.2 The Multistart k-means algorithm12

GOPart algorithm will also be compared with the k-means algorithm [16, 27, 32], where the13

initial centers are chosen in many successive iterations and a better solution is retained14

[18]. For more details about global optimality in the k-means algorithm, see [37]. This15

procedure is written in Algorithm 2.16

Algorithm 2 : (Multistart k-means algorithm)
Input: A ⊂ [α, β] ⊂ Rn {Set of data points}; k ≥ 2 It > 1;

1: Determine c(0) ∈ [α, β]k at random;
2: Apply the k-means algorithm to the set A, with initial centers c(0), denote the solution

by ĉ = ĉ(0) and set F0 = F (ĉ);
3: for i = 1 to It do
4: Determine c(i) ∈ [α, β]k at random;
5: Apply the k-means algorithm to the set A, with initial centers c(i), denote the

solution by ĉ(i) and set F1 = F (ĉ(i));
6: if F1 ≤ F0 then
7: Set ĉ = ĉ(i) and set F0 = F1;
8: end if
9: end for
Output: {ĉ, F (ĉ)}.

Remark 1. Note that line 6 includes the possibility that the k-means algorithm loses some17

cluster. In that case, the value of the function F increases, so that this partition is not18

competitive in terms of an optimal partition.19

The algorithm for circle centers that will be used in Section 3 is defined analogously.20

2.2.3 The Incremental algorithm21

The Incremental algorithm [3, 4, 33], which emerged as an improvement of the global k-22

means algorithm originally proposed in [19], is very frequently mentioned in the literature23
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as a tool for searching for a partition close to a globally optimal one. The proposed GOPart1

algorithm will be compared with an incremental algorithm in the way it was constructed2

in [33]. After determining the first r−1 centers ĉ1, . . . , ĉr−1, an approximation of the3

following r-th center is determined by using DIRECT algorithm to solve the following GOP:4

ĉr = argmin
c∈Rn

Φ(c), Φ(c) =
m∑
i=1

min{δir−1, d(c, ai)}, (7)5

where δir−1 = min{d(ĉ1, a
i), . . . , d(ĉr−1, a

i)}. After that, the first r centers c?1, . . . , c?r are6

obtained by using the k-means algorithm with initial centers ĉ1, . . . , ĉr. The main short-7

coming of this algorithm is its strong dependence on the choice of the initial center ĉ1. A8

reasonable possibility for that is the mean of the set A or random choice [3, 4, 27].9

2.3 Numerical experiments10

For the purpose of comparing the proposed algorithm with other algorithms listed in11

the previous section, we carried out the following experiment2. In the square [0, 10]2 ⊂12

R2, k = 5 different points Pj ∈ [0, 10]2, j = 1, . . . , k were randomly chosen, such that13

‖Pr − Ps‖ > 1 for r 6= s. After that, mj ∼ U(280, 320) random points were generated in14

the neighborhood of the point Cj by using binormal random additive errors with mean15

vector 0 ∈ R and the covariance matrices σ2
j I, σ2

j ∈ [1, 1.25], where I ∈ R2×2 is the16

identity matrix. These points make the cluster πj. In this way, we construct the partition17

Π = {π1, . . . , πk} of the set A with clusters πj and their centers cj = 1
mj

∑
a∈πj

a.18

Additionally, the cluster πj will be characterized by the circle19

Cj(cj, σj) = {x ∈ R2 : ‖cj − x‖ = σj}, σ2
j = 1

|πj |

∑
a∈πj

‖cj − a‖2, (8)20

which will be called the main circle of the cluster πj.21

The efficiency of an algorithm will be measured by its ability to recognize the partition22

Π as well as by CPU-time required for that purpose. That is why we will use this algorithm23

to determine the optimal partitions Π̂(s), s = 2, . . . , 6, and calculate the corresponding24

AR index R(Π̂(s),Π) for each of them (see e.g. [13]). We will consider the partition Π̂(s0)
25

as the best partition of the set A if the highest AR index is reached thereon.26

In addition, the quality of the obtained partition Π̂(s0) will be measured by comparing27

its main circles with the main circles (8) of the original partition Π. If ĉ = (ĉ1, . . . , ĉs0) are28

centers, and Ĉt(ĉt, σ̂t), σ̂2
t = 1

|π̂t|
∑
a∈π̂t

‖ĉt − a‖2 the corresponding main circles of clusters29

π̂1, . . . , π̂s0 , we will consider that some main circle Cj is recognized if there exists a main30

circle Ĉt(ĉt, σ̂t) from the partition Π̂(s0) such that the Hausdorff distance [31]31

H(Cj, Ĉt) = ‖cj − ĉt‖+ |σj − σ̂t| < ε, (9)32

2All evaluations were done on the basis of our own Mathematica-modules freely available at: https:
//www.mathos.unios.hr/images/homepages/scitowsk/GOPart.rar, and were performed on the com-
puter with a 2.90 GHz Intel(R) Core(TM)i7-75000 CPU with 16GB of RAM.

https://www.mathos.unios.hr/images/homepages/scitowsk/GOPart.rar
https://www.mathos.unios.hr/images/homepages/scitowsk/GOPart.rar
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for some small ε > 0. The recognized main circles were searched for by means of Algo-1

rithm 3 (see Section 3.4.1).2

The algorithms considered in this way, i.e. the DIRECT algorithm, the Multistart3

k-means algorithm (with It = 25 randomly chosen initial approximations), the Incremental4

algorithm and the new GOPart algorithm, will be tested and their efficiency will be mutu-5

ally compared on 100 data sets randomly generated in the previously described way. Initial6

approximation for the GOPart algorithm has been obtained in 5 iterations of the DIRECT7

algorithm. Table 1 gives realized characteristics of every aforementioned algorithm:8

• CPU-time required;9

• the number of experiments in which the partition with s ∈ {2, . . . , 6} clusters was10

chosen as the best partition on the basis of the AR index (see the first multicolumn11

in Table 1);12

• the number of the main circles in the best partition recognized by using Algorithm 313

with threshold ε = .25 (see the second multicolumn in Table 1).14

In Table 1, it can be seen that the proposed GOPart algorithm is not worse than other15

algorithms, and the DIRECT algorithm requires significantly more CPU-time than other16

algorithms.17

Algorithm CPU-time Detection of the best partition Main circles recognized
(sec.) 6 5 4 3 2 5 4 3 2 1 0

GOPart 12.80 2 91 7 - - 18 26 28 18 9 1
Incremental 8.41 3 88 9 - - 15 28 18 25 11 3
k-means 98.13 - 92 8 - - 18 17 33 19 8 5
DIRECT 688.21 - 100 - - - 21 31 25 23 - -

Table 1: Frequency of detection of the best partition with s ∈ {2, 3, 4, 5, 6} clusters, frequency of
the main circles recognized and CPU-time required by algorithms for the set A ⊂ R2
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0 2 4 6 8 10 12

0

2

4

6

8

10

(b) F = 2653.78
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(c) F = 2373.65
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(d) F = 2891.04

Figure 1: Examples of partitions from the described experiment

Fig.1 shows four selected data sets with corresponding cluster centers and their main18

circles (black circles), and objective function values are given in the header. Figures 1a-b19
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show sets of data points, where the GOPart algorithm recognized the 5-partition as the1

best partition. All five main circles (red circles) were recognized in Fig.1a, whereas only2

one main circle was recognized in Fig.1b. For the set of data points shown in Fig.1c,3

the GOPart algorithm recognized the 4-partition as the best partition and only two main4

circles. For the set of data points shown in Fig.1d, the GOPart algorithm recognized the5

6-partition as the best partition and only two main circles.6

The same experiment was also conducted on 100 similarly generated sets A ⊂ R5.7

Initial approximation for the proposed GOPart algorithm has been obtained in 6 iterations8

of the DIRECT algorithm. It was also shown that the proposed GOPart algorithm is not9

worse than other algorithms.10

Algorithm CPU-time Detection of the best partition Main circles recognized
(sec.) 6 5 4 3 2 5 4 3 2 1 0

GOPart 22.32 4 94 2 - - 82 2 6 10 - -
Incremental 129.27 3 91 6 - - 80 9 6 5 - -
k-means 114.13 3 92 5 - - 90 - 5 3 1 1
DIRECT 1490.83 - 100 - - - 81 - 12 7 - -

Table 2: Frequency of detection of the best partition with s ∈ {2, 3, 4, 5, 6} clusters, frequency of
the main circles recognized and CPU-time required by algorithms for the set A ⊂ R5

The Multistart k-means algorithm was run on the basis of 25 random initial ap-11

proximations and significant CPU-time was necessary for running this algorithm. The12

Incremental algorithm also shows relatively good results.13

The proposed GOPart algorithm has a very high degree of recognition and small CPU-14

time justified the initial expectations. It should also be noted that for the implementation15

of the GOPart algorithm, in Step 2 the DIRECT algorithm required an average of one-third,16

whereas in Step 3 the k-means algorithm required two-thirds of the total CPU-time.17

These simple illustrative examples show that the characteristics of the proposed GOPart18

algorithm are not worse than other algorithms compared. Its superiority, when it comes19

to solving the multiple circles detection problem, will be shown in the next section.20

3 Application to solving the multiple circle detection21

problem22

Let A = {ai = (xi, yi) ∈ R2 : α1 ≤ xi ≤ β1, α2 ≤ yi ≤ β2, i = 1, . . . ,m} be a set of23

points which come from k circles that should be reconstructed or detected. Note that24

A ⊂ [α, β] = [α1, β1] × [α2, β2] ⊂ R2, α = (α1, α2), β = (β1, β2). There are several25

different approaches to solving this problem in the literature, such as methods based on26

Hough transformation and various heuristic approaches (see e.g. [2, 8, 28]). Most of them27

cannot be used in real-time applications.28
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In [31], this problem is considered as a center-based clustering problem, where centers1

of clusters are circles. Based on this method, in our paper we propose a new, very efficient2

method for solving this problem. We shall name this method Multiple Circle Detection3

(MCD) method.4

Searching for an optimal partition Π? = {π?1, . . . , π?k} with cluster circle-centers C?
j (S?j , r?j ),5

S?j = (p?j , q?j ) boils down to searching for optimal parameters (p?j , q?j , r?j ), j = 1, . . . , k,6

which give a solution to the following GOP (cf. (3))7

argmin
(p,q)∈[α,β]k,r∈[0,R]k

F (p,q, r), F (p,q, r) =
m∑
i=1

min
1≤j≤k

{D((pj, qj), rj), ai)}, (10)8

where p ∈ [α1, β1]k, q ∈ [α2, β2]k, r ∈ [0, R]k, R = 1
2 min{α2 − α1, β2 − α2}, and9

D((pj, qj), rj), ai) represent the distance from the point ai ∈ A to the circle Cj(pj, qj).10

The distance-like function D can be defined in a different way [7, 22, 31], but the alge-11

braic distance12

D(C(S, r), ai) = (‖S − ai‖2 − r2)2 (11)13

occurs most frequently in applications, and, therefore, this possibility is also used in our14

paper.15

3.1 MCD method16

In line with the GOPart method described in Section 2.1, it is possible to apply the global17

optimization algorithm DIRECT for the purpose of finding a favorable initial approximation.18

For that purpose, similarly to Section 2.1, the objective function F : [α, β]k × [0, R]k →19

R will be transformed on f : [0, 1]3k → R, f(x) = (F ◦ T−1)(x), where the mapping20

T : [α1, β1]k × [α2, β2]k × [0, R]k → [0, 1]3k is given by21

T (x) = D(x− u), (12)22

D = diag
(

1
β1−α1

, 1
β2−α2

, 1
R
, . . . 1

β1−α1
, 1
β2−α2

, 1
R

)
∈ R3k×3k

23

u = (α1, β1, 0, . . . , α1, β1, 0) ∈ R3k.24
25

An initial approximation x̂ ∈ [0, 1]3k for the GOP26

argmin
x∈[0,1]3k

f(x), f(x) = (f ◦ T−1)(x), (13)27

will be determined by using the DIRECT algorithm. The vector (p̂, q̂, r̂) = T−1(x̂) is an28

initial approximation for solving GOP (10). After that, a globally optimal solution of (10)29

will be obtained by applying the k-closest circles algorithm (KCC). This algorithm is30

the well-known k-means algorithm [16, 18] adapted for searching for a locally optimal31

partition with circles as clusters-centers (see [31]). The algorithm can be described in two32

steps which are repeated iteratively.33
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Algorithm 3. (The k-closest circles algorithm (KCC))1

Step A: For each set of mutually different circles C1, . . . , Ck, the set A should be divided2

into k disjoint unempty clusters π1, . . . , πk by using the minimal distance principle:3

πj := πj(Cj) = {a ∈ A : D(Cj, a) ≤ D(Cs, a), ∀s = 1, . . . , k, s 6= j}; (14)4

Step B: Given a partition Π = {π1, . . . , πk} of the set A, one can define the corresponding5

circle-centers C?
j ((p?j , q?j ), r?j ) j = 1, . . . , k by solving the following GOPs6

argmin
(p,q)∈[α,β],r∈[0,R]

Fj(p, q, r), Fj(p, q, r) =
∑
a∈πj

D(C((p, q), r), a); (15)7

Remark 2. Solutions to GOPs (15) can be found by using some local optimization method8

(Newton, Quasi-Newton), since for every j = 1, . . . , k in the cluster πj we are able to9

determine a very favorable initial approximation Ĉj(Ŝj, r̂j) of the required circle. Namely,10

for Ŝj, we can choose a centroid 1
|πj |

∑
a∈πj

a of the cluster πj, and r̂j is determined by11

r̂2
j = 1

|πj |

∑
a∈πj

‖Ŝj − a‖2, (16)12

because13 ∑
a∈πj

(
‖Ŝj − a‖2 − r2

j

)2
≥
∑
a∈πj

(
‖Ŝj − a‖2 − r̂2

j

)2
, for all rj ∈ R.14

After applying the KCC algorithm to the vector (p̂, q̂, r̂), we obtain a globally optimal15

solution (p?,q?, r?) of GOP (10).16

3.2 Modified MCD method (MMCD)17

In MCD algorithm, the initial circle centers are searched for by using the DIRECT algorithm.18

This means that GOP (13) is solved after transformation (12), where the objective function19

f has 3k independent variables. It can be seen that this number can be reduced to 2k,20

without losing efficiency of the algorithm. Simply, instead of solving GOP (10), we are21

solving22

argmin
(p,q)∈[α,β]k

F̃ (p,q), F̃ (p,q) =
m∑
i=1

min
1≤j≤k

{D((pj, qj), rj), ai)}, (17)23

where rj ∈ [0, R] are constants (say rj = 1). To the initial approximation obtained in this24

way, we apply the KCC algorithm, which gives an optimal partition.25

3.3 Comparison with other algorithms26

The proposed MCD and MMCD algorithms will be compared with the Multistart k-means27

algorithm for circle-centers and with the Incremental algorithm for circle-centers [31] and28

with the DIRECT algorithm. Akinlar and Topal [2] have proposed a real-time, parameter-29

free circle detection (Algorithm EDCircles) with high detection rates, but this algorithm30

is not applicable to solving the circle detection problem in the case of circles with unclear31

or noisy edges and therefore it does not recognize any of the circles tested in Section 3.4.32
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3.3.1 The Multistart k-means algorithm for circle-centers1

The Multistart k-means algorithm for circle-centers can be constructed similarly to Algo-2

rithm 2, where the initial approximation is a vector consisting of k circle-centers Ĉj(Ŝj, r̂j),3

j = 1, . . . , k, where Ŝj ∈ [α, β] ⊂ R2 are randomly selected points such that ‖Ŝr− Ŝs‖ > 14

for r 6= s, a r̂j ∼ U(0, R). Similarly to Algorithm 2, the initial circle-centers are suc-5

cessively selected multiple times, we apply the KCC algorithm thereto and retain a better6

solution.7

3.3.2 Incremental algorithm for circle-centers8

In [31], the authors proposed a modification of the incremental algorithm for solving9

the multiple circle detection problem. After determining the first r − 1 circle-centers10

Ĉ1, . . . , Ĉr−1, the approximation of the following r-th circle-center Ĉr is determined by11

solving the following GOP12

argmin
p,q∈[α,β], r∈[0,R]

Φ(p, q, r), Φ(p, q, r) =
m∑
i=1

min{δir−1, D(C((p, q), r), ai)}, (18)13

where δir−1 = min{D(Ĉ1, a
i), . . . , D(Ĉr−1, a

i)}. The solution to GOP (18) will also be14

searched for by using the DIRECT algorithm. After that, the first r circle-centers C?
1 , . . . , C

?
r15

are obtained by using the KCC algorithm with initial circle-centers Ĉ1, . . . , Ĉr.16

The main shortcoming of this algorithm is its dependence on the initial circle-center17

Ĉ1. A reasonable possibility for that is Ĉ1 = C(Ŝ1, r̂1), where, in line with Remark 2, we18

choose19

Ŝ1 = 1
m

∑
a∈A

a, r̂1 =
√

1
m

∑
a∈A
‖Ŝ1 − a‖2.20

Another possibility is the choice of a random circle-center.21

3.4 Numerical experiments22

The following experiment was conducted. In the square [0, 10]2 ⊂ R2, we randomly23

choose k points S1, . . . , Sk, such that ‖Sr −Ss‖ > 2 for r 6= s and k random real numbers24

ri ∼ U(.5, 2). In this way, we construct a set of circles C = {Cj(Sj, rj) : j = 1, . . . , k} in the25

plane. In the neighborhood of each circle Cj, mj = 300 rj random points were generated26

by using binormal random additive errors with mean vector 0 ∈ R and covariance matrices27

σ2
j I, σ2

j ∈ [1, 1.25], where I ∈ R2×2 is the identity matrix. These points make a cluster28

πj. The partition Π = {π1, . . . , πk} and the set of data points A are constructed in this29

way. Circle-centers C̃j of the cluster πj are determined by using the KCC algorithm with30

the initial approximation Cj.31

Similarly to Section 2.3, efficiency of algorithms under consideration used for searching32

for the optimal k-partition of the set A (MCD, MMCD, Incremental, k-means, and DIRECT)33

will be measured by its ability to recognize the original circles as well as CPU-time required34

for that purpose.35
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The initial approximation for the MCD algorithm has been obtained in 10 iterations1

and, after that, the optimal k-partition has been obtained by using KCC algorithm in2

3 − 18 iterations. The initial approximation for the MMCD algorithm has been obtained3

in 15 iterations and, after that, the optimal k-partition has been obteined by using KCC4

algorithm in 5 − 21 iterations. Which circles are recognized and the total number of5

recognized circles will be determined by using Algorithm 3 given in Section 3.4.1.6

In this way, we will test and compare efficiency of algorithms under consideration on7

100 sets of data points randomly generated in the previously described way for k = 5.8

Table 3 gives realized characteristics of every aforementioned algorithm, CPU-time required9

and the number of recognized circles.10

Algorithm CPU No. of recognized circles
(sec.) 5 4 3 2 1 0

MCD 2.47 87 9 4 - - -
MMCD 1.96 88 9 2 1 - -
Incremental 36.85 26 3 25 21 17 8
k-means 38.00 89 4 6 1 - -
DIRECT 459.34 85 6 9 1 - -

Table 3: Frequency of the number of recognized circles and CPU-time required by algorithms

As can be seen in Table 3, CPU-time required for performing the proposed MCD and11

MMCD algorithms is significantly shorter with respect to other test methods, and a degree12

of recognition is satisfactory. In addition, let us also mention that, for the implemen-13

tation of the proposed MCD and MMCD algorithms, approximately equivalent CPU-time was14

necessary for determining the initial approximation (by using the DIRECT algorithm) and15

for searching for the final solution by using the KCC algorithm.16
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Figure 2: Examples of partitions from described experiments

Fig. 2 shows four selected data sets with corresponding original black circles and calcu-17

lated red circles for which the process of recognition was performed by using MCD algorithm.18

Objective function values for original data sets are given in the header. Figures 2a-b show19

two different sets of data points, where all five circles were recognized. Fig. 2c and Fig. 2d20

show sets of data points, where four circles and three circles were recognized, respectively.21
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In case the set of data points A originates from an unknown number of unknown1

circles, the proposed algorithm should be applied to searching for optimal partitions with2

2, 3 . . . clusters, and the choice of a partition with the most appropriate number of clusters3

can be done on the basis of the Davies-Bouldin index (see [10, 31]).4

3.4.1 Similarity measure for pairs of circles5

Similarly to [10, 31], in every experiment it was necessary to establish how many circles6

were recognized and which circles those were exactly (the second multicolumn in Table 1,7

Table 2 and Table 3). Algorithm 3 compares reconstructed circles Ĉs, s = 1, . . . , r with8

original circles Cj, j = 1, . . . , k and gives the answer to these questions.9

Algorithm 3 (Search for detected circles)

Input: Cj, j = 1, . . . , k (Original circles), Ĉs, s = 1, . . . , r (Calculated circles), ε > 0
1: for s = 1, . . . , r do
2: min = 10ε;
3: for j = 1, . . . , k do
4: Hdist = H(Ĉs, Cj) [According to (9)]
5: if Hdist < min, then
6: min = Hdist; j0 = j
7: end if
8: end for
9: if min < ε, then

10: nr = nr + 1 “Circle Ĉs is recognized as the circle Cj0”
11: end if
12: end for
Output: nr

4 Conclusions10

Searching for a globally optimal partition of the set A ⊂ Rn by using some global op-11

timization method is not acceptable due to the existence of a large number of points12

where the global minimum of the corresponding objective function is attained. Hence, in13

this paper we propose the use of the DIRECT global optimization algorithm only for the14

purpose of searching for a good initial approximation, after which, the standard k-means15

algorithm should be applied. In terms of efficiency, such approach is not worse than other16

known methods used for searching for an optimal partition with spherical clusters in Rn.17

However, if this approach is used for solving the multiple circle detection problem, the18

obtained results are much better. It is shown that the proposed algorithm gives a correct19

solution to this problem and that CPU-time required is rather short at the same time20

A similar result can also be expected in the case of applications to other geometrical21

objects (e.g. lines [38], ellipses [10], generalized circles [36]).22
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Short CPU-time necessary for the implementation of the proposed algorithm indicates1

a possibility of its application to solving problems in real-time applications.2
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